Stationary Coexistence of Hexagons and Rolls via Rigorous Computations
نویسندگان
چکیده
In this work we introduce a rigorous computational method for finding heteroclinic solutions of a system of two second order differential equations. These solutions correspond to standing waves between rolls and hexagonal patterns of a two-dimensional pattern formation PDE model. After reformulating the problem as a projected boundary value problem (BVP) with boundaries in the stable/unstable manifolds, we compute the local manifolds using the parameterization method and solve the BVP using Chebyshev series and the radii polynomial approach. Our results settle a conjecture by Doelman et al. [European J. Appl. Math., 14 (2003), pp. 85–110] about the coexistence of hexagons and rolls.
منابع مشابه
New Stability Results for Patterns in a Model of Long–Wavelength Convection
We consider the transition from a spatially uniform state to a steady, spatiallyperiodic pattern in a partial differential equation describing long-wavelength convection [1]. This both extends existing work on the study of rolls, squares and hexagons and demonstrates how recent generic results for the stability of spatially-periodic patterns may be applied in practice. We find that squares, eve...
متن کاملNew Stability Results for Long–Wavelength Convection Patterns
We consider the transition from a spatially uniform state to a steady, spatiallyperiodic pattern in a partial differential equation describing long-wavelength convection [1]. This both extends existing work on the study of rolls, squares and hexagons and demonstrates how recent generic results for the stability of spatially-periodic patterns may be applied in practice. We find that squares, eve...
متن کاملReentrant Hexagons in non-Boussinesq Convection
While non-Boussinesq hexagonal convection patterns are well known to be stable close to threshold (i.e. for Rayleigh numbers R ≈ Rc), it has often been assumed that they are always unstable to rolls already for slightly higher Rayleigh numbers. Using the incompressible Navier-Stokes equations for parameters corresponding to water as a working fluid, we perform full numerical stability analyses ...
متن کاملOnset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux
We analyze the thermal convection thresholds and linear characteristics of the primary 1 and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from 2 below by a constant flux. Galerkin method is used to solve the eigenvalue problem by taking 3 into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total 4 viscos...
متن کاملReentrant and Whirling Hexagons in Non-Boussinesq convection
We review recent computational results for hexagon patterns in nonBoussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a verti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 14 شماره
صفحات -
تاریخ انتشار 2015