Stationary Coexistence of Hexagons and Rolls via Rigorous Computations

نویسندگان

  • Jan Bouwe van den Berg
  • Andréa Deschênes
  • Jean-Philippe Lessard
  • Jason D. Mireles-James
چکیده

In this work we introduce a rigorous computational method for finding heteroclinic solutions of a system of two second order differential equations. These solutions correspond to standing waves between rolls and hexagonal patterns of a two-dimensional pattern formation PDE model. After reformulating the problem as a projected boundary value problem (BVP) with boundaries in the stable/unstable manifolds, we compute the local manifolds using the parameterization method and solve the BVP using Chebyshev series and the radii polynomial approach. Our results settle a conjecture by Doelman et al. [European J. Appl. Math., 14 (2003), pp. 85–110] about the coexistence of hexagons and rolls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Stability Results for Patterns in a Model of Long–Wavelength Convection

We consider the transition from a spatially uniform state to a steady, spatiallyperiodic pattern in a partial differential equation describing long-wavelength convection [1]. This both extends existing work on the study of rolls, squares and hexagons and demonstrates how recent generic results for the stability of spatially-periodic patterns may be applied in practice. We find that squares, eve...

متن کامل

New Stability Results for Long–Wavelength Convection Patterns

We consider the transition from a spatially uniform state to a steady, spatiallyperiodic pattern in a partial differential equation describing long-wavelength convection [1]. This both extends existing work on the study of rolls, squares and hexagons and demonstrates how recent generic results for the stability of spatially-periodic patterns may be applied in practice. We find that squares, eve...

متن کامل

Reentrant Hexagons in non-Boussinesq Convection

While non-Boussinesq hexagonal convection patterns are well known to be stable close to threshold (i.e. for Rayleigh numbers R ≈ Rc), it has often been assumed that they are always unstable to rolls already for slightly higher Rayleigh numbers. Using the incompressible Navier-Stokes equations for parameters corresponding to water as a working fluid, we perform full numerical stability analyses ...

متن کامل

Onset of Primary and Secondary Instabilities of Viscoelastic Fluids Saturating a Porous Layer Heated from below by a Constant Flux

We analyze the thermal convection thresholds and linear characteristics of the primary 1 and secondary instabilities for viscoelastic fluids saturating a porous horizontal layer heated from 2 below by a constant flux. Galerkin method is used to solve the eigenvalue problem by taking 3 into account the elasticity of the fluid, the ratio between the viscosity of the solvent and the total 4 viscos...

متن کامل

Reentrant and Whirling Hexagons in Non-Boussinesq convection

We review recent computational results for hexagon patterns in nonBoussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a verti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015